Li-Fi-like System
intended to bring 100-Gbps Speeds Straight to Your Computer
Soon you will get 100 Gbps speed into your computer with
Li-Fi Like Systems
Earlier the data which was transferred to our computer was not
accurate and had drops while travelling a long way to its final destination
that is you. The data which travelled in the form of light has certain
drops in midway due to various reasons. Now, researcher believe it’s all over.
How would it sound if we take the light all the way to the
computer or TV, projecting it through the air over the last few meters and only
converting it to an electronic signal at the end? That sounds amazing isn’t.
The researches at Oxford University is working on the similar technique
with a system that takes light from the fiber, amplifies it, and beams it
across a room to deliver data at more than 100 gigabits per second.
Ariel Gomez,
a Ph.D. student in photonics at Oxford University who describes the
system in IEEE Photonics Technology Letters says that such indoor optical wireless
probably wouldn’t replace Wi-Fi, but if compared with data rates of 3 terabits
per second and up, it’s certainly amazing and could find its uses. Wi-Fi, by
contrast, can give a maximum top speed of about 7 Gb/s. And with light, there’s
no worry about sticking to a limited set of radio frequencies. “If you’re in
the optical window, you have virtually unlimited bandwidth and unlicensed
spectrum,” Gomez says.
So to use this feature, you need to install a base station on
the ceiling of a room, which would project the light toward the computer and
also receive data heading out from the computer to the Internet.
The transceivers should be mounted with a wide field of view to
make the alignment task easier, because the device relies on wavelength
division multiplexing, which splits the signal into slightly different colours
of light. Just like a prism, which diffracts the light into several
colours, the diffraction grating of the beam steerer bends each wavelength a
different amount. With a 60° field of view, the team was able to transmit six
different wavelengths, each at 37.4 Gb/s, for an aggregate bandwidth of 224
Gb/s. With a 36° field of view, they managed only three channels, for 112 Gb/s.
The
system requires a direct line of sight, and for now the receiver must be in a
fixed position. The next step is to develop a tracking and location system so
that a user could place a laptop at a random spot on a table and have the
system find it and create a link.
The team which is working on
this technology also included researchers from University College, London,
accomplished this using so-called holographic beam steering at both the
transmitter and receiver ends. These use an array of liquid crystals to create
a programmable diffraction grating that reflects the light in the desired
direction. The device is similar to that used in projectors, says Dominic O’Brien, a
photonics engineer at Oxford who directed the work.
Brien is a member of the Ultra-Parallel Visible
Light Communications project, with colleagues at the
Universities of Edinburgh, Strathclyde, St. Andrews, and Cambridge. Among
several goals one of their goals is to develop LiFi, which uses the light
that’s also illuminating a room as a way to send data signals. He says LiFi usually
refers to schemes based on visible wavelengths of light, whereas this system
relies on infrared light at 1550 nm, which is used in telecommunications.
All these technologies—Wi-Fi, Li-Fi,
optical wireless—may wind up being part of how people link devices to the
Internet. There is no limitations in the field of technology and today or some
other day the most advanced and reliable technology has to come and replace all
others. The fact that remains is the time which the technology would take to
develop.
67u6u67
ReplyDelete